1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
static uint8_t __attribute__((aligned(64))) ppu_bitreverse_lut[256] = {
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff
};
static void ppu_reset(struct nes_state *state) {
struct ppu_state *restrict ppu = &state->ppu;
memset(ppu, 0, sizeof(struct ppu_state));
}
__attribute__((hot, flatten, optimize("unroll-loops")))
static inline void ppu_evaluate_sprites(struct nes_state *state, uint32_t scanline) {
struct ppu_state *restrict ppu = &state->ppu;
uint8_t sprite_height = (ppu->reg_ctrl & PPU_CTRL_SPRITE_HEIGHT) ? 16 : 8;
uint8_t n = 0;
uint8_t sprite_zero_found = 0;
uint8_t * restrict src = ppu->oam;
uint8_t * restrict dst = ppu->secondary_oam;
for(uint8_t i = 0; i < 64; i++, src += 4) {
uint32_t row = scanline - src[0];
if(row < sprite_height) {
if(n < 8) {
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst += 4;
sprite_zero_found |= (i == 0);
n++;
} else {
ppu->reg_status |= PPU_STATUS_SPRITE_OVERFLOW;
break;
}
}
}
ppu->sprite_zero_in_range = sprite_zero_found;
ppu->sprite_count = n;
}
__attribute__((hot))
static inline void ppu_fetch_sprite_patterns(struct nes_state * restrict state, uint32_t scanline) {
struct ppu_state *restrict ppu = &state->ppu;
uint8_t * restrict sec_oam = ppu->secondary_oam;
uint8_t ctrl = ppu->reg_ctrl;
uint8_t sprite_height = (ctrl & PPU_CTRL_SPRITE_HEIGHT) ? 16 : 8;
uint32_t sprite_pattern_table_base = (ctrl & PPU_CTRL_SPRITE_TILE) << 9;
for(uint8_t i = 0; i < ppu->sprite_count; i++, sec_oam += 4) {
uint8_t y = sec_oam[0];
uint8_t tile = sec_oam[1];
uint8_t attr = sec_oam[2];
uint8_t x = sec_oam[3];
uint32_t row = scanline - y;
row = (attr & SPRITE_ATTR_FLIP_VERTICAL) ? sprite_height - 1 - row : row;
uint32_t bank;
uint32_t addr;
if(sprite_height == 16) {
// For 8x16 sprites:
// - Bank comes from tile bit 0 (bits 1-7 are the tile index)
// - Row 0-7 uses base tile, row 8-15 uses base tile + 1
// - Row offset wraps to 0-7 within each 8-pixel half
//
// Original logic:
// bank = (tile & 1) << 12;
// tile &= 0xfe;
// if(row >= 8) { tile++; row -= 8; }
// addr = bank + tile * 16 + row;
addr = ((tile & 1) << 12) + ((tile & 0xfe) + (row >> 3)) * 16 + (row & 7);
} else {
addr = sprite_pattern_table_base + tile * 16 + row;
}
uint8_t val_lo = state->mapper_function.chr_read(state, addr);
uint8_t val_hi = state->mapper_function.chr_read(state, addr + 8);
uint8_t rev = -(!!(attr & SPRITE_ATTR_FLIP_HORIZONTAL));
uint8_t lsb = (rev & ppu_bitreverse_lut[val_lo]) | (~rev & val_lo);
uint8_t msb = (rev & ppu_bitreverse_lut[val_hi]) | (~rev & val_hi);
ppu->sprites[i].shift_lo = lsb;
ppu->sprites[i].shift_hi = msb;
ppu->sprites[i].position = x;
ppu->sprites[i].priority = attr & SPRITE_ATTR_PRIORITY;
ppu->sprites[i].palette = attr & SPRITE_ATTR_PALETTE_MASK;
}
}
__attribute__((always_inline, hot, optimize("no-jump-tables", "no-unroll-loops")))
static inline void ppu_render_pixel(struct nes_state * restrict state, uint32_t x, uint32_t y, uint8_t mask_reg) {
struct ppu_state *restrict ppu = &state->ppu;
uint16_t bit = 0x8000 >> ppu->fine_x;
uint8_t sp_pixel = 0;
uint8_t sp_palette = 0;
uint8_t sp_prio = 0;
uint8_t sp_zero = 0;
// uint8_t mask_reg = ppu->reg_mask; // Single load
uint8_t show_bg = mask_reg & PPU_MASK_SHOW_BG;
uint8_t show_sprites = mask_reg & PPU_MASK_SHOW_SPRITES;
uint8_t left_bg = mask_reg & 0x02;
uint8_t left_sp = mask_reg & 0x04;
uint8_t bg_mask = (show_bg && (left_bg || x & ~7)) ? 0xff : 0x00;
uint8_t sp_mask = (show_sprites && (left_sp || x & ~7));
// Background
uint8_t p0 = !!(ppu->bg_shift_pattern_low & bit);
uint8_t p1 = !!(ppu->bg_shift_pattern_high & bit);
uint8_t a0 = !!(ppu->bg_shift_attrib_low & bit);
uint8_t a1 = !!(ppu->bg_shift_attrib_high & bit);
uint8_t bg_pixel = ((p1 << 1) | p0) & bg_mask;
uint8_t bg_palette = ((a1 << 1) | a0) & bg_mask;
// Sprites - evaluate in forward order (0 has highest priority)
if(sp_mask) {
uint8_t found_sprite = 0xff;
for(uint8_t i = 0; i < ppu->sprite_count; i++) {
if(!ppu->sprites[i].position) {
sp_pixel = (((ppu->sprites[i].shift_hi & 0x80) >> 6) | ((ppu->sprites[i].shift_lo & 0x80) >> 7));
if(sp_pixel) {
found_sprite = i;
goto sprite_found;
}
}
}
goto no_sprite;
sprite_found:
sp_prio = ppu->sprites[found_sprite].priority;
sp_palette = ppu->sprites[found_sprite].palette;
sp_zero = ppu->sprite_zero_in_range & !(found_sprite);
}
no_sprite:
// Final pixel composition
uint8_t bg_index = (bg_palette << 2) + bg_pixel;
uint8_t sp_index = (sp_palette << 2) + sp_pixel;
uint8_t selector = (bg_pixel ? 2 : 0) | (sp_pixel ? 1 : 0);
uint8_t palette_index = 0;
if(selector == 1) {
palette_index = 0x10 | sp_index;
} else if(selector == 2) {
palette_index = bg_index;
} else if(selector == 3) {
palette_index = (sp_prio) ? bg_index : (0x10 | sp_index);
if (sp_zero && x <= 254) ppu->reg_status |= PPU_STATUS_SPRITE_ZERO_HIT;
}
state->pixels[y * 256 + x] = ppu->palette[palette_index]; // NOTE(peter): Add color_emphasis bits (expand palette to 8x).
}
__attribute__((noinline, hot, optimize("no-jump-tables", "unroll-loops")))
static void ppu_tick(struct nes_state *state) {
struct ppu_state *restrict ppu = &state->ppu;
uint32_t dot = ppu->dot;
uint32_t scanline = ppu->scanline;
uint8_t reg_mask = ppu->reg_mask;
uint8_t rendering = (reg_mask & (PPU_MASK_SHOW_SPRITES | PPU_MASK_SHOW_BG));
for(uint8_t ppu_loops = 0; ppu_loops < 3; ++ppu_loops) {
if(rendering) {
if(scanline <= 239) {
if(dot >= 1 && dot < 256) { // NOTE(peter): dot 256 will be done in the next else in the chain
ppu_render_pixel(state, dot - 1, scanline, reg_mask);
goto shift_and_fetch;
} else if(dot == 256) {
if((ppu->vram_addr & 0x7000) != 0x7000) {
ppu->vram_addr += 0x1000;
} else {
ppu->vram_addr &= ~0x7000;
uint32_t y = (ppu->vram_addr & 0x03e0) >> 5;
if(y == 29) {
y = 0;
ppu->vram_addr ^= 0x0800;
} else if(y == 31) {
y = 0;
} else {
y++;
}
ppu->vram_addr = (ppu->vram_addr & ~0x03e0) | (y << 5);
}
ppu_render_pixel(state, dot - 1, scanline, reg_mask);
goto shift_and_fetch;
} else if(dot == 257) {
ppu->vram_addr = (ppu->vram_addr & ~0x041f) | (ppu->temp_addr & 0x041f);
ppu_evaluate_sprites(state, scanline);
} else if(dot >= 321 && dot <= 336) {
goto shift_and_fetch;
} else if(dot == 340) {
ppu_fetch_sprite_patterns(state, scanline);
}
}
if(scanline == 261) {
if(dot >= 1 && dot < 256) { // NOTE(peter): dot 256 will be done in the next else in the chain
goto shift_and_fetch;
} else if(dot == 256) {
if((ppu->vram_addr & 0x7000) != 0x7000) {
ppu->vram_addr += 0x1000;
} else {
ppu->vram_addr &= ~0x7000;
uint32_t y = (ppu->vram_addr & 0x03e0) >> 5;
if(y == 29) {
y = 0;
ppu->vram_addr ^= 0x0800;
} else if(y == 31) {
y = 0;
} else {
y++;
}
ppu->vram_addr = (ppu->vram_addr & ~0x03e0) | (y << 5);
}
goto shift_and_fetch;
} else if(dot == 257) {
ppu->vram_addr = (ppu->vram_addr & ~0x041f) | (ppu->temp_addr & 0x041f);
} else if(dot >= 280 && dot <= 304) {
ppu->vram_addr = (ppu->vram_addr & ~0x7be0) | (ppu->temp_addr & 0x7be0);
} else if(dot >= 321 && dot <= 336) {
shift_and_fetch:
if(reg_mask & PPU_MASK_SHOW_SPRITES) {
for(uint32_t i = 0; i < ppu->sprite_count; i++) {
if(ppu->sprites[i].position > 0) {
ppu->sprites[i].position--;
} else {
ppu->sprites[i].shift_lo <<= 1;
ppu->sprites[i].shift_hi <<= 1;
}
}
}
ppu->bg_shift_pattern_low <<= 1;
ppu->bg_shift_pattern_high <<= 1;
ppu->bg_shift_attrib_low <<= 1;
ppu->bg_shift_attrib_high <<= 1;
switch(dot % 8) {
case 1: {
uint32_t nt_addr = 0x2000 | (ppu->vram_addr & 0x0fff);
ppu->bg_next_tile_id = state->mapper_function.ciram_read(state, nt_addr);
} break;
case 3: {
uint32_t attr_addr = 0x23c0 | (ppu->vram_addr & 0x0c00) | ((ppu->vram_addr >> 4) & 0x38) | ((ppu->vram_addr >> 2) & 0x07);
uint8_t attr = state->mapper_function.ciram_read(state, attr_addr & 0x0fff);
uint8_t shift = ((ppu->vram_addr >> 4) & 4) | (ppu->vram_addr & 2);
ppu->bg_next_tile_attrib = (attr >> shift) & 3;
} break;
case 5: {
uint32_t base = (ppu->reg_ctrl & PPU_CTRL_BG_TILE_SELECT) << 8;
uint32_t tile = ppu->bg_next_tile_id;
uint32_t fine_y = (ppu->vram_addr >> 12) & 7;
uint32_t addr_lsb = (base + tile * 16 + fine_y) & 0x1fff;
ppu->bg_next_tile_lsb = state->mapper_function.chr_read(state, addr_lsb);
} break;
case 7: {
uint32_t base = (ppu->reg_ctrl & PPU_CTRL_BG_TILE_SELECT) << 8;
uint32_t tile = ppu->bg_next_tile_id;
uint32_t fine_y = (ppu->vram_addr >> 12) & 7;
uint32_t addr_msb = (base + tile * 16 + fine_y + 8) & 0x1fff;
ppu->bg_next_tile_msb = state->mapper_function.chr_read(state, addr_msb);
} break;
case 0: {
ppu->bg_shift_pattern_low = (ppu->bg_shift_pattern_low) | ppu->bg_next_tile_lsb;
ppu->bg_shift_pattern_high = (ppu->bg_shift_pattern_high) | ppu->bg_next_tile_msb;
uint8_t a = ppu->bg_next_tile_attrib;
ppu->bg_shift_attrib_low = (ppu->bg_shift_attrib_low) | ((a & 1) ? 0xff : 0x00);
ppu->bg_shift_attrib_high = (ppu->bg_shift_attrib_high) | ((a & 2) ? 0xff : 0x00);
if((ppu->vram_addr & 0x001f) == 31) {
ppu->vram_addr &= ~0x001f;
ppu->vram_addr ^= 0x0400;
} else {
ppu->vram_addr++;
}
} break;
}
}
}
goto rendering_done;
}
if(dot == 256) { // NOTE(peter): THIS IS EXPENSIVE
ppu->sprite_count = 0;
}
rendering_done:
if(dot == 1) {
switch(scanline) {
case 241: {
ppu->reg_status |= PPU_STATUS_VBLANK;
state->cpu.nmi_pending = (ppu->reg_ctrl & PPU_CTRL_NMI);
ppu->frame_ready = 1;
} break;
case 261: {
ppu->reg_status &= ~PPU_STATUS_VBLANK;
ppu->reg_status &= ~PPU_STATUS_SPRITE_ZERO_HIT;
ppu->reg_status &= ~PPU_STATUS_SPRITE_OVERFLOW;
} break;
}
}
dot++;
if(dot > 340) {
dot = 0;
scanline++;
if(scanline == 261 && !ppu->even_frame && rendering) {
dot = 1;
}
if(scanline > 261) {
scanline = 0;
ppu->even_frame = !ppu->even_frame;
}
}
if(state->mapper_function.tick) {
state->mapper_function.tick(state); // TODO(peter): This signature has to be changed to supply dot and scanline!
}
}
ppu->dot = dot;
ppu->scanline = scanline;
}
|