static uint8_t memory_read_dma(struct nes_state *state, uint32_t offset); static void ppu_reset_scroll_latch(struct nes_state *state) { state->ppu.write_toggle = 0; } static uint32_t compute_nt_address(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; return 0x2000 | ppu->nt_base_y | ppu->nt_base_x | ppu->coarse_y_offs | ppu->coarse_x_offs; } static uint32_t compute_at_address(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; uint32_t nt_offset = ppu->nt_base_y | ppu->nt_base_x; uint32_t attr_x = (ppu->coarse_x_offs >> 2) & 0x07; uint32_t attr_y = (ppu->coarse_y_offs >> 2) & 0x38; return 0x23c0 | nt_offset | attr_y | attr_x; } static void increment_x(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; if(ppu->coarse_x_offs == 31 << 0) { ppu->coarse_x_offs = 0; ppu->nt_base_x ^= 0x400; } else { ppu->coarse_x_offs += 1 << 0; } } static void increment_y(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; if(ppu->fine_y < 7) { ppu->fine_y++; return; } ppu->fine_y = 0; uint32_t coarse_y = ppu->coarse_y_offs >> 5; if(coarse_y == 29) { ppu->coarse_y_offs = 0; ppu->nt_base_y ^= 0x800; } else if(coarse_y == 31) { ppu->coarse_y_offs = 0; // Do not toggle nt_base_y — stays the same } else { ppu->coarse_y_offs += 1 << 5; } } static void ppu_vram_write(struct nes_state *state, uint32_t addr, uint8_t value) { // PPU address bus is 14 bits, wraps every 0x4000 addr &= 0x3fff; if(addr < 0x2000) { // Pattern table (CHR ROM is read-only, ignore write) return; } if(addr < 0x3f00) { // Nametable RAM (CIRAM), mirrored every 0x1000 uint32_t nt_index = addr & 0x0fff; state->ciram[nt_index] = value; return; } if(addr < 0x4000) { // Palette RAM (0x3F00–0x3FFF), mirrored every 32 bytes addr = 0x3f00 + (addr & 0x1f); // Palette mirroring: $3F10/$3F14/$3F18/$3F1C mirror $3F00/$3F04/$3F08/$3F0C if((addr & 0x13) == 0x10) { addr &= ~0x10; } state->palette[addr & 0x1f] = value; } } static uint8_t ppu_vram_read(struct nes_state *state, uint32_t addr) { // PPU address bus is 14 bits, wraps every 0x4000 addr &= 0x3fff; if(addr < 0x2000) { // Pattern table (CHR ROM) return state->chrrom[addr]; } if(addr < 0x3f00) { // Nametables (0x2000–0x2FFF mirrored every 0x1000) uint32_t nt_index = addr & 0x0fff; return state->ciram[nt_index]; } if(addr < 0x4000) { // Palette RAM (0x3F00–0x3FFF, mirrored every 32 bytes) addr = 0x3f00 + (addr & 0x1f); // Palette mirroring: $3F10/$3F14/$3F18/$3F1C mirror $3F00/$3F04/$3F08/$3F0C if((addr & 0x13) == 0x10) { addr &= ~0x10; } return state->palette[addr & 0x1f]; } return 0; } static uint8_t ppu_read_2002(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; uint8_t result = ppu->status; ppu->status &= ~PPU_STATUS_VBLANK; ppu->write_toggle = 0; return result; } static void ppu_write_2003(struct nes_state *state, uint8_t value) { state->ppu.oam_addr = value; } static uint8_t ppu_read_2004(struct nes_state *state) { return state->ppu.oam[state->ppu.oam_addr]; } static void ppu_write_2004(struct nes_state *state, uint8_t value) { state->ppu.oam[state->ppu.oam_addr] = value; state->ppu.oam_addr++; } static void ppu_write_2005(struct nes_state *state, uint8_t value) { struct ppu_state *ppu = &state->ppu; if(ppu->write_toggle == 0) { ppu->temp_fine_x = value & 7; ppu->temp_coarse_x_offs = (value >> 3) & 0x1f; ppu->temp_coarse_x_offs <<= 0; ppu->write_toggle = 1; } else { ppu->temp_fine_y = value & 7; uint8_t coarse_y = (value >> 3) & 0x1f; ppu->temp_coarse_y_offs = coarse_y << 5; if(coarse_y >= 30) { // vertical nametable select ppu->temp_nt_base_y = 0x800; } else { ppu->temp_nt_base_y = 0x000; } ppu->write_toggle = 0; } } static void ppu_write_2006(struct nes_state *state, uint8_t value) { struct ppu_state *ppu = &state->ppu; if(ppu->write_toggle == 0) { // High byte: bits 14–8 of VRAM address ppu->temp_nt_base_y = (value & 0x0c) << 8; ppu->temp_nt_base_x = (value & 0x01) << 10; ppu->temp_coarse_y_offs = (value & 0x03) << 3; ppu->temp_coarse_y_offs <<= 5; ppu->write_toggle = 1; } else { // Low byte: bits 7–0 of VRAM address ppu->temp_coarse_x_offs = (value & 0x1f) << 0; ppu->temp_fine_y = (value >> 2) & 7; // On second write, transfer temp -> current scroll state ppu->coarse_x_offs = ppu->temp_coarse_x_offs; ppu->coarse_y_offs = ppu->temp_coarse_y_offs; ppu->fine_x = ppu->temp_fine_x; ppu->fine_y = ppu->temp_fine_y; ppu->nt_base_x = ppu->temp_nt_base_x; ppu->nt_base_y = ppu->temp_nt_base_y; ppu->write_toggle = 0; } } static uint8_t ppu_read_2007(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; uint32_t addr = compute_nt_address(state); if(ppu->fine_y) { addr += ppu->fine_y; } uint8_t result; if(addr < 0x3f00) { // Return buffered value, load new one result = ppu->read_buffer; ppu->read_buffer = ppu_vram_read(state, addr); } else { // Palette reads bypass buffer result = ppu_vram_read(state, addr); ppu->read_buffer = ppu_vram_read(state, addr & 0x2fff); // mirror to pattern/nametable area } // Auto-increment address if(ppu->ctrl & PPU_CTRL_INCREMENT) { increment_y(state); } else { increment_x(state); } return result; } static void ppu_write_2007(struct nes_state *state, uint8_t value) { struct ppu_state *ppu = &state->ppu; uint32_t addr = compute_nt_address(state); if(ppu->fine_y) addr += ppu->fine_y; ppu_vram_write(state, addr, value); if(ppu->ctrl & PPU_CTRL_INCREMENT) { increment_y(state); } else { increment_x(state); } } static uint8_t ppu_pattern_read(struct nes_state *state, uint8_t tile_index, uint8_t fine_y, uint8_t plane) { struct ppu_state *ppu = &state->ppu; uint32_t base = (ppu->ctrl & PPU_CTRL_BG_TABLE) ? 0x1000 : 0x0000; uint32_t addr = base + (tile_index << 4) + fine_y; if(plane) { addr += 8; } return ppu_vram_read(state, addr); } static void ppu_eval_sprites(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; uint8_t scanline = ppu->scanline; uint8_t height = (ppu->ctrl & PPU_CTRL_SPRITE_HEIGHT) ? 16 : 8; uint8_t count = 0; for(uint8_t i = 0; i < 64; i++) { uint8_t *sprite = &ppu->oam[i * 4]; uint8_t sprite_y = sprite[0]; if(scanline >= sprite_y && scanline < sprite_y + height) { if(count < 8) { uint8_t *dest = &ppu->sec_oam[count * 4]; dest[0] = sprite[0]; dest[1] = sprite[1]; dest[2] = sprite[2]; dest[3] = sprite[3]; count++; } else { ppu->status |= PPU_STATUS_OVERFLOW; break; } } } } static void ppu_clear_sec_oam(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; for(int i=0; i<32; i++) { ppu->sec_oam[i] = 0xff; } } static void ppu_render_sprites(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; // Clear sprite pixel buffer for(int x=0;x<256;x++) { ppu->sprite_pixels[x] = 0; ppu->sprite_zero_flags[x] = 0; } for(int i=0;i<8;i++) { uint8_t *sprite = &ppu->sec_oam[i * 4]; uint8_t y = sprite[0]; uint8_t tile = sprite[1]; uint8_t attr = sprite[2]; uint8_t x = sprite[3]; uint8_t scanline = ppu->scanline; uint8_t height = (ppu->ctrl & PPU_CTRL_SPRITE_HEIGHT) ? 16 : 8; int sprite_y = scanline - y; if(attr & 0x80) { // Vertical flip sprite_y = height - 1 - sprite_y; } uint32_t base = (ppu->ctrl & PPU_CTRL_SPRITE_TABLE) ? 0x1000 : 0x0000; uint32_t addr = base + tile * 16 + sprite_y; uint8_t lo = ppu_vram_read(state, addr); uint8_t hi = ppu_vram_read(state, addr + 8); for(int j=0;j<8;j++) { int sx = x + (attr & 0x40 ? j : (7 - j)); // horizontal flip if(sx >= 256) continue; uint8_t bit = 1 << j; uint8_t p0 = (lo & (1 << (7 - j))) ? 1 : 0; uint8_t p1 = (hi & (1 << (7 - j))) ? 1 : 0; uint8_t color = (attr & 0x03) << 2 | (p1 << 1) | p0; if((p0 | p1) == 0) continue; if(ppu->sprite_pixels[sx] == 0) { ppu->sprite_pixels[sx] = color | 0x10; if(i == 0) ppu->sprite_zero_flags[sx] = 1; } } } } static void ppu_tick(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; if(ppu->scanline == 241 && ppu->dot == 1) { ppu->status |= PPU_STATUS_VBLANK; ppu->nmi_occurred = 1; } if(ppu->scanline == 261 && ppu->dot == 1) { ppu->status &= ~PPU_STATUS_VBLANK; ppu->status &= ~PPU_STATUS_SPRITE0_HIT; ppu->status &= ~PPU_STATUS_OVERFLOW; ppu->nmi_occurred = 0; } if((ppu->scanline < 240 || ppu->scanline == 261) && (ppu->dot >= 1 && ppu->dot <= 256)) { uint32_t cycle = (ppu->dot - 1) % 8; switch(cycle) { case 0: { ppu->bg_tile_lsb = (ppu->bg_tile_lsb & 0xffff0000) | ppu->tile_lsb; ppu->bg_tile_msb = (ppu->bg_tile_msb & 0xffff0000) | ppu->tile_msb; ppu->bg_attr_lsb = (ppu->attr_byte & 1) ? 0xff : 0x00; ppu->bg_attr_msb = (ppu->attr_byte & 2) ? 0xff : 0x00; } break; case 1: { ppu->nt_byte = ppu_vram_read(state, compute_nt_address(state)); } break; case 3: { ppu->attr_byte = ppu_vram_read(state, compute_at_address(state)); } break; case 5: { ppu->tile_lsb = ppu_pattern_read(state, ppu->nt_byte, ppu->fine_y, 0); } break; case 7: { ppu->tile_msb = ppu_pattern_read(state, ppu->nt_byte, ppu->fine_y, 1); } break; } ppu->bg_tile_lsb <<= 1; ppu->bg_tile_msb <<= 1; ppu->bg_attr_lsb <<= 1; ppu->bg_attr_msb <<= 1; if(ppu->scanline < 240) { uint8_t p0 = (ppu->bg_tile_lsb & 0x8000) ? 1 : 0; uint8_t p1 = (ppu->bg_tile_msb & 0x8000) ? 1 : 0; uint8_t a0 = (ppu->bg_attr_lsb & 0x80) ? 1 : 0; uint8_t a1 = (ppu->bg_attr_msb & 0x80) ? 1 : 0; uint8_t color = (a1 << 3) | (a0 << 2) | (p1 << 1) | p0; uint32_t index = ppu->scanline * 256 + (ppu->dot - 1); uint8_t bg_color = color; uint8_t sprite_color = ppu->sprite_pixels[ppu->dot - 1]; uint8_t final_color = bg_color; if(sprite_color && ((bg_color & 3) == 0 || !(ppu->mask & 0x04))) { // Sprite above BG, or BG is transparent final_color = sprite_color; } if(ppu->sprite_zero_flags[ppu->dot - 1] && (bg_color & 3) && (sprite_color & 0x1f) && (ppu->mask & 0x18)) { ppu->status |= PPU_STATUS_SPRITE0_HIT; } ppu->pixels[index] = final_color; } } if(ppu->scanline < 240 && ppu->dot == 257) { ppu_render_sprites(state); } if(ppu->scanline < 240 || ppu->scanline == 261) { if(ppu->dot == 256) { increment_x(state); increment_y(state); } else if(ppu->dot == 328) { increment_x(state); } } ppu->dot++; if(ppu->scanline == 261 && ppu->dot == 339 && ppu->frame_even) { if(ppu->mask & (PPU_MASK_SHOW_BG | PPU_MASK_SHOW_SPRITES)) { ppu->dot++; } } if(ppu->dot > 340) { ppu->dot = 0; ppu->scanline++; if(ppu->scanline > 261) { ppu->scanline = 0; ppu->frame_even ^= 1; } } // Clear secondary OAM at start of scanline if(ppu->scanline < 240 || ppu->scanline == 261) { if(ppu->dot == 1) { ppu_clear_sec_oam(state); } } // Perform sprite evaluation if(ppu->scanline < 240 && ppu->dot == 65) { ppu_eval_sprites(state); } } static void ppu_dma_4014(struct nes_state *state, uint8_t page) { uint32_t base = page << 8; for(int i = 0; i < 256; i++) { uint8_t value = memory_read_dma(state, base + i); state->ppu.oam[i] = value; ppu_tick(state); ppu_tick(state); ppu_tick(state); // apu_tick(state); state->cycle++; } // DMA takes 513 cycles on even CPU cycles, 514 on odd int extra = (state->cycle & 1) ? 514 : 513; for(int i = 0; i < extra; i++) { ppu_tick(state); ppu_tick(state); ppu_tick(state); // apu_tick(state); state->cycle++; } }