static uint8_t __attribute__((aligned(64))) ppu_bitreverse_lut[256] = { # define R2(n) n, n + 2*64, n + 1*64, n + 3*64 # define R4(n) R2(n), R2(n + 2*16), R2(n + 1*16), R2(n + 3*16) # define R6(n) R4(n), R4(n + 2*4 ), R4(n + 1*4 ), R4(n + 3*4 ) R6(0), R6(2), R6(1), R6(3) }; #undef R2 #undef R4 #undef R6 static uint8_t memory_read_dma(struct nes_state *state, uint32_t offset); static void ppu_reset(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; memset(ppu, 0, sizeof(struct ppu_state)); } __attribute__((always_inline, hot)) static inline void ppu_write(struct nes_state *state, uint32_t offset, uint8_t value) { struct ppu_state *ppu = &state->ppu; switch(offset & 7) { case 0: { // 2000 ppu->reg_ctrl = value; ppu->temp_addr = (ppu->temp_addr & 0xf3ff) | ((value & 0x03) << 10); ppu->open_bus = value; } break; case 1: { // 2001 ppu->reg_mask = value; ppu->open_bus = value; } break; case 3: { // 2003 ppu->oam_addr = value; } break; case 4: { // 2004 ppu->oam[ppu->oam_addr] = value; ppu->oam_addr++; } break; case 5: { // 2005 if(ppu->write_latch == 0) { ppu->fine_x = value & 0x07; ppu->temp_addr = (ppu->temp_addr & ~0x001f) | (value >> 3); ppu->write_latch = 1; } else { ppu->temp_addr = (ppu->temp_addr & ~0x73e0) | ((value & 0x07) << 12) | ((value & 0xf8) << 2); ppu->write_latch = 0; } ppu->open_bus = value; } break; case 6: { // 2006 if(ppu->write_latch == 0) { ppu->temp_addr = (ppu->temp_addr & 0x00ff) | ((value & 0x3f) << 8); ppu->write_latch = 1; } else { ppu->temp_addr = (ppu->temp_addr & 0xff00) | value; ppu->vram_addr = ppu->temp_addr; ppu->write_latch = 0; } ppu->open_bus = value; } break; case 7: { // 2007 uint32_t addr = ppu->vram_addr & 0x3fff; if(addr < 0x2000) { // CHR-RAM, skip } else if(addr < 0x3f00) { state->mapper.ciram_write(state, addr, value); } else if(addr < 0x4000) { uint32_t pal_addr = addr & 0x1f; if((pal_addr & 3) == 0) { pal_addr &= ~0x10; } ppu->palette[pal_addr] = value; } ppu->vram_addr += (ppu->reg_ctrl & 0x04) ? 32 : 1; } break; } } __attribute__((always_inline, hot)) static inline uint8_t ppu_read(struct nes_state *state, uint32_t offset) { struct ppu_state *ppu = &state->ppu; uint8_t result = ppu->open_bus; switch(offset & 7) { case 2: { // 2002 result = ppu->reg_status; ppu->reg_status &= ~0x80; ppu->write_latch = 0; } break; case 4: { // 2004 result = ppu->oam[ppu->oam_addr]; } break; case 7: { // 2007 uint32_t addr = ppu->vram_addr & 0x3fff; result = 0; if(addr < 0x2000) { result = ppu->vram_read_buffer; ppu->vram_read_buffer = state->mapper.chr_read(state, addr); } else if(addr < 0x3f00) { result = state->mapper.ciram_read(state, addr); } else if(addr < 0x4000) { uint32_t pal_addr = addr & 0x1f; if((pal_addr & 0x13) == 0x10) { pal_addr &= ~0x10; } result = ppu->palette[pal_addr]; } ppu->vram_addr += (ppu->reg_ctrl & 0x04) ? 32 : 1; } break; } ppu->open_bus = result; return result; } __attribute__((hot)) static void ppu_evaluate_sprites(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; uint8_t sprite_height = (ppu->reg_ctrl & 0x20) ? 16 : 8; uint8_t n = 0; uint8_t *src = ppu->oam; uint8_t *dst = ppu->secondary_oam; for(uint8_t i = 0; i < 64; i++) { uint8_t y = src[0]; int32_t row = (int32_t)ppu->scanline - y; if(row >= 0 && row < sprite_height) { if(n < 8) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; ppu->sprite_indexes[n] = i; ppu->sprite_zero_hit_possible |= (i == 0); dst += 4; n++; } else { ppu->reg_status |= 0x20; break; } } src += 4; } ppu->sprite_count = n; } __attribute__((hot)) static void ppu_fetch_sprite_patterns(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; uint32_t addr; uint32_t bank; uint8_t *s = ppu->secondary_oam; uint8_t height = (ppu->reg_ctrl & 0x20) ? 16 : 8; for(uint8_t i = 0; i < ppu->sprite_count; i++) { uint8_t y = s[0], tile = s[1], attr = s[2], x = s[3]; uint8_t row = ppu->scanline - y; row = (attr & 0x80) ? height - 1 - row : row; if(height == 16) { bank = (tile & 1) << 12; tile &= 0xfe; if(row >= 8) { tile++; row -= 8; } } else { bank = (ppu->reg_ctrl & 0x08) << 9; } addr = bank + tile * 16 + row; uint8_t lsb = state->mapper.chr_read(state, addr); uint8_t msb = state->mapper.chr_read(state, addr + 8); if(attr & 0x40) { lsb = ppu_bitreverse_lut[lsb]; msb = ppu_bitreverse_lut[msb]; } ppu->sprite_shift_lo[i] = lsb; ppu->sprite_shift_hi[i] = msb; ppu->sprite_positions[i] = x; ppu->sprite_priorities[i] = attr & 0x20; s += 4; } } __attribute__((hot)) static void ppu_render_pixel(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; uint32_t x = ppu->dot - 1; uint32_t y = ppu->scanline; // Fine X shift mask // static const uint16_t fine_shift[8] = { 0x8000, 0x4000, 0x2000, 0x1000, 0x0800, 0x0400, 0x0200, 0x0100 }; uint16_t bit = 0x8000 >> ppu->fine_x;//fine_shift[ppu->fine_x]; uint8_t bg_pixel = 0; uint8_t bg_palette = 0; uint8_t sp_pixel = 0; uint8_t sp_palette = 0; uint8_t sp_prio = 0; uint8_t sp_zero = 0; #if 1 // TODO(peter): Decide what I prefer, masking away unlikely path, or LIKELY hint to the compiler uint8_t bg_mask = (ppu->reg_mask & 0x08) ? 0xff : 0x00; uint8_t sp_mask = (ppu->reg_mask & 0x10) ? 0xff : 0x00; // Background uint8_t p0 = !!(ppu->bg_shift_pattern_low & bit); uint8_t p1 = !!(ppu->bg_shift_pattern_high & bit); uint8_t a0 = !!(ppu->bg_shift_attrib_low & bit); uint8_t a1 = !!(ppu->bg_shift_attrib_high & bit); bg_pixel = ((p1 << 1) | p0) & bg_mask; bg_palette = ((a1 << 1) | a0) & bg_mask; // Sprite for(uint8_t i = 0; i < ppu->sprite_count; i++) { if(ppu->sprite_positions[i]) continue; uint8_t lo = ppu->sprite_shift_lo[i]; uint8_t hi = ppu->sprite_shift_hi[i]; sp_pixel = (((hi & 0x80) >> 6) | ((lo & 0x80) >> 7)) & sp_mask; if(!sp_pixel) continue; sp_palette = ppu->secondary_oam[i * 4 + 2] & 3; sp_prio = ppu->sprite_priorities[i]; sp_zero = (ppu->sprite_indexes[i] == 0); break; } #else // Background fetch if(LIKELY(ppu->reg_mask & 0x08)) { uint8_t p0 = !!(ppu->bg_shift_pattern_low & bit); uint8_t p1 = !!(ppu->bg_shift_pattern_high & bit); bg_pixel = (p1 << 1) | p0; uint8_t a0 = !!(ppu->bg_shift_attrib_low & bit); uint8_t a1 = !!(ppu->bg_shift_attrib_high & bit); bg_palette = (a1 << 1) | a0; } // Sprite fetch if(LIKELY(ppu->reg_mask & 0x10)) { for(uint8_t i = 0; i < ppu->sprite_count; i++) { if(ppu->sprite_positions[i]) continue; uint8_t lo = ppu->sprite_shift_lo[i]; uint8_t hi = ppu->sprite_shift_hi[i]; sp_pixel = ((hi & 0x80) >> 6) | ((lo & 0x80) >> 7); if(!sp_pixel) continue; sp_palette = ppu->secondary_oam[i * 4 + 2] & 3; sp_prio = ppu->sprite_priorities[i]; sp_zero = (ppu->sprite_indexes[i] == 0); break; } } #endif // Final pixel composition uint8_t palette_index = 0; uint8_t bg_index = (bg_palette << 2) + bg_pixel; uint8_t sp_index = (sp_palette << 2) + sp_pixel; uint8_t selector = (bg_pixel ? 2 : 0) | (sp_pixel ? 1 : 0); switch(selector) { case 0: { palette_index = 0; } break; case 1: { palette_index = 0x10 | sp_index; } break; case 2: { palette_index = bg_index; } break; case 3: { if(sp_zero && ppu->sprite_zero_hit_possible && x < 255) { ppu->reg_status |= 0x40; } palette_index = (sp_prio) ? bg_index : 0x10 | sp_index; } break; } state->pixels[y * 256 + x] = ppu->palette[palette_index]; // NOTE(peter): Add color_emphasis bits (expand palette to 8x). } __attribute__((hot, flatten)) static void ppu_tick(struct nes_state *state) { struct ppu_state *ppu = &state->ppu; uint32_t dot = ppu->dot; uint32_t scanline = ppu->scanline; uint8_t rendering = (ppu->reg_mask & 0x18); for(uint32_t ppu_loops = 0; ppu_loops < 3; ++ppu_loops) { if(LIKELY(rendering)) { if(ppu->even_frame && dot == 0) { // call mapper_tick here. ppu->dot++; } if(scanline < 240 && dot >= 1 && dot <= 256) { ppu_render_pixel(state); } if(scanline < 240 || scanline == 261) { if((dot >= 1 && dot <= 256) || (dot >= 321 && dot <= 336)) { if(ppu->reg_mask & 0x10) { for(uint32_t i = 0; i < ppu->sprite_count; i++) { if(ppu->sprite_positions[i] > 0) { ppu->sprite_positions[i]--; } else { ppu->sprite_shift_lo[i] <<= 1; ppu->sprite_shift_hi[i] <<= 1; } } } ppu->bg_shift_pattern_low <<= 1; ppu->bg_shift_pattern_high <<= 1; ppu->bg_shift_attrib_low <<= 1; ppu->bg_shift_attrib_high <<= 1; switch(dot % 8) { case 1: { uint32_t nt_addr = 0x2000 | (ppu->vram_addr & 0x0fff); ppu->bg_next_tile_id = state->mapper.ciram_read(state, nt_addr); break; } case 3: { uint32_t attr_addr = 0x23c0 | (ppu->vram_addr & 0x0c00) | ((ppu->vram_addr >> 4) & 0x38) | ((ppu->vram_addr >> 2) & 0x07); uint8_t attr = state->mapper.ciram_read(state, attr_addr & 0x0fff); uint8_t shift = ((ppu->vram_addr >> 4) & 4) | (ppu->vram_addr & 2); ppu->bg_next_tile_attrib = (attr >> shift) & 3; break; } case 5: { uint32_t base = (ppu->reg_ctrl & 0x10) ? 0x1000 : 0x0000; uint32_t tile = ppu->bg_next_tile_id; uint32_t fine_y = (ppu->vram_addr >> 12) & 7; uint32_t addr_lsb = (base + tile * 16 + fine_y) & 0x1fff; ppu->bg_next_tile_lsb = state->mapper.chr_read(state, addr_lsb); break; } case 7: { uint32_t base = (ppu->reg_ctrl & 0x10) ? 0x1000 : 0x0000; uint32_t tile = ppu->bg_next_tile_id; uint32_t fine_y = (ppu->vram_addr >> 12) & 7; uint32_t addr_msb = (base + tile * 16 + fine_y + 8) & 0x1fff; ppu->bg_next_tile_msb = state->mapper.chr_read(state, addr_msb); break; } case 0: { ppu->bg_shift_pattern_low = (ppu->bg_shift_pattern_low & 0xff00) | ppu->bg_next_tile_lsb; ppu->bg_shift_pattern_high = (ppu->bg_shift_pattern_high & 0xff00) | ppu->bg_next_tile_msb; uint8_t a = ppu->bg_next_tile_attrib; ppu->bg_shift_attrib_low = (ppu->bg_shift_attrib_low & 0xff00) | ((a & 1) ? 0xff : 0x00); ppu->bg_shift_attrib_high = (ppu->bg_shift_attrib_high & 0xff00) | ((a & 2) ? 0xff : 0x00); if((ppu->vram_addr & 0x001f) == 31) { ppu->vram_addr &= ~0x001f; ppu->vram_addr ^= 0x0400; } else { ppu->vram_addr++; } break; } } } if(dot == 256) { if((ppu->vram_addr & 0x7000) != 0x7000) { ppu->vram_addr += 0x1000; } else { ppu->vram_addr &= ~0x7000; uint32_t y = (ppu->vram_addr & 0x03e0) >> 5; if(y == 29) { y = 0; ppu->vram_addr ^= 0x0800; } else if(y == 31) { y = 0; } else { y++; } ppu->vram_addr = (ppu->vram_addr & ~0x03e0) | (y << 5); } } if(dot == 257) { ppu->vram_addr = (ppu->vram_addr & ~0x041f) | (ppu->temp_addr & 0x041f); } if(UNLIKELY(scanline == 261) && dot >= 280 && dot <= 304) { ppu->vram_addr = (ppu->vram_addr & ~0x7be0) | (ppu->temp_addr & 0x7be0); } if(dot == 257 && LIKELY(scanline < 240)) { ppu_evaluate_sprites(state); } if(dot == 340 && (LIKELY(scanline < 240) || UNLIKELY(scanline == 261))) { ppu_fetch_sprite_patterns(state); } } } if(UNLIKELY(scanline == 241) && dot == 1) { ppu->reg_status |= 0x80; if(ppu->reg_ctrl & 0x80) { state->nmi_pending = 1; } } if(UNLIKELY(scanline == 261) && dot == 1) { ppu->reg_status &= ~0x80; ppu->reg_status &= ~0x40; ppu->sprite_zero_hit_possible = 0; } dot++; if(dot > 340) { dot = 0; scanline++; if(scanline > 261) { scanline = 0; ppu->frame_ready = 1; ppu->even_frame = !ppu->even_frame; } } ppu->dot = dot; ppu->scanline = scanline; } } __attribute__((always_inline, hot)) static inline void ppu_dma_4014(struct nes_state *state, uint8_t page) { uint32_t base = page << 8; // Add 1 or 2 idle cycles depending on current CPU cycle uint8_t idle_cycles = (state->cycles & 1) ? 1 : 2; for(uint8_t i = 0; i < idle_cycles; i++) { state->cycles++; ppu_tick(state); } for(uint32_t i = 0; i < 256; i++) { uint32_t addr = base + i; state->cycles++; ppu_tick(state); uint8_t value = memory_read_dma(state, addr); state->cycles++; ppu_tick(state); // ppu_write_2004(state, value); ppu_write(state, 4, value); } }